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Abstract: There has been a rapid increase in the number of corporate bonds issued in Australia since the
middle of 1998. This increase has stimulated interest in characterising the yield curves and the factors
that determine changes in these spreads. The focus of this paper is on measuring any impact of stock
market volatility on spreads using two different measures. One measure is based on volatility implied
from options prices while the other is derived from a conditional heteroscedastic volatility model of
changes in a stock market index. It is found that the former has no significant impact on spreads but the
latter is both significant and stable over time. This impact is estimated to be negative implying that an
increase in volatility cause a decrease in corporate bond spreads.
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1. INTRODUCTION

It is only since the middle of 1998 that the
number of corporate bonds on issue has been
sufficiently large to enable an econometric
characterisation of credit spreads to be
undertaken across a broad range of credit ratings
and industries. In a previous line of research,
Berg et al. [2000] fitted yield curves to daily
data on spreads to Commonwealth Government
Securities for nine (Standard and Poor’s®) credit
ratings categories (AAA to BBB) and five
industry categories.

The model constructed by Berg et al. [2000], and
published under the name CBASpectrum®, is
estimated separately for each day in an ongoing
basis so that the time series of estimated spreads
that flow from this model can reasonably be used
as data input for this research. Appropriate time
series methods can then be used to gain insight
into how spreads evolve over time and, in
particular, into how they react to market forces
external to the corporate bond market.

Since the family of estimated yield curves is
characterised by twelve parameters, one strategy

is to model the evolution of the estimated
parameters. Indeed, such an approach implies
that the full system could be modelled by a finite
number of equations whereas the direct
modelling of spreads, as is done in this paper,
requires that an arbitrary finite subset of an
infinite number of ratings/duration combinations
be considered. In the first instance, the direct
modelling approach has been followed as it has
far greater intuitive appeal and can reasonably
limited to modelling a smaller number of
ratings/duration combinations than the number of
parameters in the system.

While credit spreads can be constructed from
actual data, such an approach would suffer from
the consequent evolution in duration of the
selected bonds over time and any particular
changes in the characteristics of these bonds.
These problems are removed by implying a
credit spread for a generic bond of fixed duration
and rating over time. The ‘bonds’ chosen for this
study are AAA, AA, A and BBB, each of a
constant five year duration, and the spreads are
measured as deviations from the estimated
Commonwealth Government Securities yield
curves using CBASpectrum®.
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Two possible external influences on the corporate
bond market are considered in this paper: the
stock market, as measured by the ASX Large
Capitalisation Index, and implied volatility.
While 425 daily observations are used in the
analysis of bond spreads: 1st July 1998 to 16th
March 2001, 800 daily observations are used to
measure volatility so as to remove any end-point
effects due to the estimation procedure.

2. STOCK MARKET VOLATILITY

It is now commonplace to measure volatility in
financial time series using Engle’s [1982] ARCH
or Bollerslev’s [1986] GARCH models. These
models are based on the notion that the
innovations of a time series process
unconditionally have a fixed variance, but that
volatility clustering occurs in the sense that the
conditional variance of a process varies over
time.

A GARCH(p,q) model can be expressed as

h, = 0, + Zfouel + z‘llthl-j + Zlyg, ¢Y)
where €, are the innovations in the levels model,
h, is the conditional variance, and g,

factors that determine changes in conditional
volatility.

Autoregressions were considered for the log first-
difference of the index but no such terms were
significant. Indeed, a constant term was not
significant and, therefore, was excluded. Thus, €,
is the change in the log of the index. The
preferred model is a GARCH(1,1). The estimated
parameters, with approximate t-ratios, is
presented in Table 1.

Table 1. Estimated GARCH(1,1) Model.

Parameter Estimate
0.0588
% (2.78)
a, 0.1034
(3.46)
0.7999
P (14.76)

The implied conditional standard deviations h’,
from this model are depicted in Figure 1. It
shows some possible initial value problem due to
having to estimate h. The impact of an outlier at
18th April 2000 (Day 573) can also be noted.
Owing to the scale of this figure it is difficult to
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note that the conditional standard deviation more
than doubles going from day 572 to 573 but it
takes approximately 10 days to return to the level
of day 572 owing to the persistence in the
estimated GARCH model.
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Figure 1. GARCH and Implied Volatility.

Implied volatility is an alternative measure of
uncertainty in the stock market based on options
prices and it can also be noted from Figure 1
that it has very different time series
characteristics from the GARCH variant. Implied
volatility takes a longer term view of uncertainty
than a GARCH measure, and it is forward
looking, rather than being an instantaneous
measure of volatility, as is the GARCH estimate.

The question posed in this paper is whether stock
market volatility, as represented by either the
GARCH model, or implied volatility, impact on
the estimated credit spreads generated by
CBASpectrum®.

3. CREDIT RATINGS SPREAD MODELS
The estimated spreads for the four generic bonds
of five years to maturity are presented in Figure
2. It can be noted that each spread has undergone
a number of changes in the sign of the local
trend and the relative spreads have also varied
substantially during that period.

Unit root tests were performed on each series
using the Augmented Dickey-Fuller [1979] test,
including a constant term and a time trend, on
the last 425 observations. The lag length was
chosen by choosing using the AIC. In results not
reported, the null hypothesis of a unit root could
not be rejected at any reasonable level of
significance for any time series. Moreover, the
estimate of the largest root is numerically close
to one in each case. In the absence of other
information, it is worthwhile proceeding as if
each series is integrated to order 1, I(1).
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Figure 2. Estimated Spreads.

It is of some interest to investigate whether or
not the four time series of credit spreads are
cointegrated. However, it should be noted that
the outcome of such tests depend on the ratings
and durations of the generic bonds chosen for
inclusion in the system. The closer are the
choices of ratings bands and/or the durations, the
more likely would two series be expected to
move closely together. :

In results also not reported, Johansen’s [1988]
tests provide borderline support for cointegration
at the 5% level. However, the single candidate
cointegrating vector had no obvious economic
interpretation. It was resolved that this
characteristic was more due to the generic bonds
being of the same duration than any long term
economic relationship. As a result a Vector
Autoregression (VAR) in the first differences of
the spreads was selected.

4. EQUITY VOLATILITY AND SPREADS
The main problem of performing a joint time
series analysis of the four changes in credit
spreads and one of the conditional standard
deviation series, or the implied volatility, in a
five equation VAR is that this would imply that
the lagged credit spreads affected the conditional
standard deviations in contradiction of the model
reported in Table 1. The GARCH process was
re-estimated incorporating some such lagged
effects as g, variables in the notation of (1).
However, it was not possible to aliow for more
than one lag in (1) without numerical problems
arising. With one lag, there were no significant
Y, so that the GARCH model of Table 1 need
not be modified. Moreover, this implied that the
appropriate VAR is a four equation model of the
differences of the spreads but with each equation
augmented by the lags of volatility time series.

1393

The volatility measures were allowed to enter
contemporaneously since the GARCH estimates
depend only upon the lagged log-differences of
the stock market index through g in (1). For
equivalence, implied volatility also enters from
lag 0. The AIC selected a lag of three in the
levels for the four equation VAR including either
volatility measure. Although the GARCH series
is not I(1), the parameter estimates strongly
suggested that differencing of this variables is
appropriate so that, in the final model, two lags
of each first-differenced spread are used with the
current first-difference of the volatility measure
entering exogenously.

Since volatility is a critical variable in this
analysis, the maximum lag for this variable was
allowed to be different from that for the other
four variables. Maximum lags of 0 to 2 in the
differences were used in turn for this variable,
along with two lags of the other (differenced)
variables. The AIC was used to select this
maximum lag length and zero was chosen for
both volatility measures.

Table 2. t-ratios on Volatility Variables.

Spread
Variable AAA AA A BBB
GARCH 342 -240 -192 -0.73
Implied 102 087 039 056

When each volatility measure enters separately,
the GARCH-variant t-ratios, shown in Table 2,
are negative and progressively less significant as
the rating level rises. On the other hand, the
implied volatility measure is everywhere positive
and insignificant. When both measures are
simultaneously included, there was no change in
these conclusions about the two measures.

Since the two volatility measures provide
different conclusions it is appropriate to further
analyse the models to look for possible structural
instability or influential data. In order to gain
some insight into the stability of the model,
Bewley and Yang’s [2000] long-run CUSUM
tests were applied to each equation. This test
differs from the standard CUSUM test in that it
is applied to the Bewley [1979] transform of the
VAR and, as a result, breaks are analysed in the
means of the time series rather than in the
constants of a VAR which depend on all of the
means and all of the lagged dependent variable
coefficients. Bewley and Yang show that the



long-run test is more powerful that its short-run
counterpart in most areas of interest.

Since no long-run CUSUM trace breaks its
critical value, there is no evidence of any
structural instability from these tests. The long-
run recursive coefficients, using the Bewley
transformation of the VAR, on the volatility
measure were also considered.

The largest estimate of volatility occurred on day
573 so that it is of some interest to examine the
recursive traces for changes around that day.
While there is some mild evidence of sensitivity
to this observation in the BBB spreads, there is
no evidence elsewhere. Indeed, the traces are
remarkably flat over the last three-quarters of the
sample. Perhaps what is more important is that
the coefficients do not change in the
neighbourhood of day 573 but the confidence
band narrows considerably. This behaviour is
consistent with the largest volatility observation
being consistent with the rest of the data.

Table 3. One-Step Forecast Accuracy.

Model AAA AA A BBB
With Vol  0.783 1416 0977 27.972
No Vol. 0.810 1441 1.012 27.370

As a further diagnostic test, one-step ahead
forecasts were generated for the last 300 days,
updating the estimates of the coefficients at each
origin. Although from Table 2, the volatility
measure is significant at the 5% level in two of
the equations, and at the 10% level in the A
equation, there was no real gain in mean square
error as can be noted from Table 3 which
compares the forecasting ability of each credit
spread in the preferred VAR, including GARCH
volatility, against a benchmark model that
excludes this variable.

The lack of a major improvement in forecast
accuracy naturally raises the question of why
none was found. It is not uncommon in
econometrics for variables to be significant
within sample but not to contribute to forecasting
performance. However, the stability and
significance of the volatility coefficients over
time is not consistent with this phenomenon.
There being no obvious route to follow on
further analysing this question, the symmetry of
the impact of changes in volatility (in terms of
increases and decreases) was generalised by
allowing for an interactive dummy on the change
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in the volatility. Although the symmetric model
did not include a constant, the option of
including one in the asymmetric model was
considered. The results with and without a
constant are given in Table 4.

Table 4. Comparison of Impact of Increases and
Decreases in Volatility.

Variable With Without

AAA

Inc. -0.0215 -0.0193
(-3.19) (-3.00)

Dec. -0.0126 -0.0248
(-0.63) (-1.65)

AA

Inc. -0.0210 -0.0174
(-2.30) (-2.03)

Dec. -0.0073 -0.0268
(-0.28) (-1.33)

A

Inc. -0.0236 -0.0201
(-2.26) (-2.05)

Dec. 0.0167 -0.0020

(0.55) (-0.09)

BBB

Inc. -0.0275 -0.0292
(-0.70) (-0.79)

Dec. -0.0098 -0.0009
(-0.09) (-0.01)

Clearly, the increases are much better determined
than the falls and this could point to an
asymmetric effect. However, there is much
similarity between the estimated coefficients and
the lack of significance of decreases in volatility
could be due to lack of variability. While there
are some large shocks to the stock market
producing apparently sharp peaks, the persistence
in the GARCH model causes the falls to be
much slower than the increases. Since a return to
a period of low volatility in a symmetric model
would force forecasts to necessarily return to
previous levels, there is some merit in further
considering the one-sided model that only
includes the upside term. To allow for a non-zero
mean in this one-sided term and no constant in
the regressions, the mean was removed from the
positive increases in volatility.

Using AAA spreads as an example, forecasts
from the different models are considered for the
most volatile period in the sample. Assuming
that future changes in the stock market are
known, estimated coefficients based only on



prior data are given in Figure 3 using the
symmetric model. It can be noted that a
downturn is predicted but that the return to
previous levels is too quick compared to the
actual.
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Figure 3. Forecasts from Symmetric Models
With and Without Volatility.

A number of forecasts of AAA spreads from
successive origins in the same period is given in
Figure 4 from the model with no . volatility
variables included and in Figure 5 for the model
that only includes increases in volatility.
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Figure 4. Forecasts from Different Origins and
Actuals Using Models that Exclude Volatility.

Forecasts from the model without volatility,
although having two lags, behave similarly to a
naive no-change model; the forecast for all future
time is close to the last observation. On the other
hand, there is a richness in the one-sided model
forecasts that seem to give quite plausible results
in AAA spreads during this most volatile of
periods. In times of low volatility, or falling
volatility, the forecasts from this model will be
similar to those from the model that excludes
volatility. Similar forecast performance is noted
for the other three spreads.

The main problem with such a model is that the
results may be too dependent on the one large
observation on volatility (Day 573). In an

alternative approach to diagnostic testing, the
observations were re-ordered by the size of the
volatility measure, but, of course, keeping the
appropriate lags in sequence. In this way, the
estimates using all of the data are necessarily the
same as before but recursive techniques now
focus on the size of the changes rather than the
chronological ordering. Since there a number of
zeroes corresponding to the falling volatility
measure, this ordering is not unique.
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Figure 5. Forecasts from Different Origins Using
the Asymmetric Volatility Model.
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Figure 6. Recursive Coefficients with 95%
Confidence Intervals Estimated from Data
Ranked by Volatility, AAA Bonds.

One of these recursive traces is given in Figure 6
for the coefficient on volatility in the AAA
equation. It is deceptively flat in the early part of
the re-ordered sample because the volatility
variable is essentially a constant term until the
bigger shocks appear. Nevertheless, the impact is
quite constant over the re-ordered sample. If the
mean is not removed from the one-sided variable
and a constant is included, the process takes
longer to settle down but still exhibits a similar
pattern in the last 50 or so observations. Thus, it
is argued that the significance of the GARCH-
based volatility variable in the model is not due
just to the highly volatile period but there is a
reasonably similar effect for the less volatile
periods.
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As a final piece of analysis, the model with a
constant and a symmetric volatility measure was
augmented by the lagged change in the log of the
Commonwealth Government Securities yield,
Aln(CGS). This variable was included to consider
whether overall shifts of all of the yield curves
impact on the magnitude of the spreads. The
coefficients and t-ratios on the GARCH-based
volatility variable and Aln(CGS) are presented in
Table 5.

There is a reasonably consistent positive impact
on the yield curves from Aln(CGS) and it is
significant at the 5% level in two equations, that
of AA and A. However, there is no major impact
on the size or significance of the volatility
estimates.

5. CONCLUSIONS

The credit spread is the additional yield that is
priced into a bond as a compensation for various
risks (default, credit migration) and for
illiquidity. It has been found in this paper that
implied stock market volatility, derived from
options prices, has no significant impact on these
spreads on a day-to-day basis.

Table 5. Impact of Changes in CGS Yields on
Spreads.

Equation Volatility  Aln(CGS,))
AAA -0.0187 0.0151
(-3.16) (1.91)
AA -0.0167 0.0233
(-2.11) (2.21)
A -0.0150 0.0246
(-1.66) (2.04)
BBB -0.0190 0.0609
(-0.56) (1.33)

On the other hand, an instantaneous measure of
market volatility, derived from a GARCH model,
has a significant negative impact on these
spreads. That is, an increase in market volatility
causes a narrowing of spreads to Commonwealth
Government Securities.

A number of diagnostic tests were performed on
the model which established the robustness of the
model to outliers and structural change over
time. However, it was found that a one-sided
model that only passed on increases in volatility
to spreads provides more realistic forecasts.
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